
1. Introduction

● Machine learning (ML) is becoming widely used in weather research.
● ML is often faster and better than competing prediction methods.
● However, many are reluctant to adopt ML in operations, because it is a “black box” (does not 

explain decisions to user).

● Our work attempts to bridge this gap.
● We apply several interpretation methods to a convolutional neural network (CNN) trained to 

predict tornadogenesis.
● Goal: understand what CNN has learned, which has benefits in all three phases of ML (Selvaraju et 

al. 2017).

1. Development phase
 Used for debugging (does the model learn relationships that make sense?)

2. Operational phase
 Increases users’ trust and understanding in the model
 Highlights situations where model should (not) be trusted

3. ML-superiority phase
 If ML ever vastly outperforms humans at forecasting, can be used to teach humans
 Already being done for Chess (Johns et al. 2015) and Go (Silver et al. 2016)

● Also, ML interpretation can be used to form new scientific hypotheses (Wagstaff and Lee 2018).
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2. Machine Learning

● Prediction: probability of tornadogenesis for each storm in next 60 minutes
● Labels (ground truth): NWS tornado reports
● Predictors: radar and soundings

● Radar details:
 Storm-centered grid of 12 variables (Figure 1) every 5 minutes
 32 x 32, 1.5-km resolution, storm motion to the right
 From GridRad dataset (Homeyer et al. 2017); currently experimenting with MYRORSS (Ortega et 

al. 2012)

● Sounding details:
 From nearest grid cell in Rapid Refresh (RAP) or Rapid Update Cycle (RUC) analysis
 RUC before 1 May 2012, RAP otherwise

● Time period: 145 days in 2011-17 (2011-13 for training, 2014-15 validation, 2016-17 testing)
● Performance on testing data shown in Figures 2-3

Figure 1: Radar predictors for one case (one 
storm cell at one time).  CNN is trained to 

predict probability that storm will undergo 
tornadogenesis in the next hour.

Figure 3: Performance diagram (Roebber 2009) 
for testing data.  Dashed grey lines are 

frequency bias; each point in the red curve 
corresponds to one probability threshold.  

Maximum CSI = 0.27.

Figure 2: ROC curve 
(Metz 1978).  Each 
point in the curve 

corresponds to one 
probability 

threshold.  Area 
under curve = 0.89.

3. Permutation Importanceddddddddd

● Ranks importance of each predictor (x
j
) by measuring how

much performance declines when x
j
 is permuted

(randomly shuffled over all cases).

● Two versions: single-pass (Breiman 2001) and
multi-pass (Lakshmanan et al. 2015).

● Single-pass: only one predictor at a time is randomized.

● Multi-pass:
 Find most important predictor and leave it randomized.
 Find 2nd-most important and leave it randomized.
 …Repeat until all predictors are randomized.

● Single-pass and multi-pass versions (Figure 4) agree on
4 of top 5 predictors:
 v-wind
 Max 1–3-km reflectivity
 Max 5–8-km vorticity
 Max 2–4-km vorticity

Figure 4: Results of permutation 
importance.  Showing only top 10 

(of 17) predictors, with most 
important at top.  Radar predictors 
in orange; sounding predictors in 
purple; “AUC” is area under ROC 

curve for validation data.

4. Saliency Maps

● Definition: gradient of model prediction with respect to input value.

● p = model prediction (probability of tornadogenesis)
● x = input value (one predictor at one grid point)
● x

0
 = actual value of x in dataset example

● Thus, saliency is linear approx to        about x = x
0
.

● Saliency tells us how prediction changes when x changes a little bit.

● Figure 6 shows composite saliency maps for 4 sets of storms:
 Best hits = 100 tornadogenetic storms with highest forecast probabilities
 Worst false alarms = 100 non-tornadogenetic storms with highest probs
 Worst misses = 100 tornadogenetic storms with lowest probs
 Best correct nulls = 100 non-tornadogenetic storms with lowest probs

Figure 5: Composite map for each set of 
storms, showing only 4 of the 12 radar 

predictors.

Figure 6: Composite saliency map for each set 
of storms.  Heat maps represent input data 

(predictors).  Solid contours are positive 
saliency (tornadogenesis probability increases 
with predictor values inside contour); dashed 

contours are negative saliency.

5. Backwards Optimization

● Also called “feature optimization” (Olah et al. 2017).
● Goal: create synthetic input that maximizes or minimizes model prediction.
● Example: create storm with tornadogenesis probability of 100% or 0%.

● Procedure involves gradient descent, which requires starting point.  Examples:
 Uniform image (all zeros)
 Random image (Gaussian noise)
 Dataset example

● We use dataset examples (Figures 7-8).
● Caveat: does not necessarily produce realistic data.

Figure 7: Results for 100 best hits.  Backwards 
optimization applied to each storm separately, 

with goal of decreasing tornadogenesis 
probability to 0%.

Figure 8: Results for 100 worst misses.  
Backwards optimization applied to each storm 

separately, with goal of increasing 
tornadogenesis probability to 100%.

6. Novelty Detection

● Goal: find most novel image in trial set with respect to baseline set.
● Novelty detection also determines which parts of novel image make it novel.
● Used to flag Mars Rover images for further investigation (Wagstaff and Lee 2018).

● We apply novelty detection to a different CNN:
 Prediction: probability that simulated storm will develop strong rotation (future vorticity > 

0.0054 s-1 anywhere in storm)
 Predictors: storm-centered grids of reflectivity, temperature, wind
 Source: one member of NCAR convection-allowing ensemble (Schwartz et al. 2015)

● Baseline set = 100 random (mostly weak)
storms in 2015

● Trial set = 100 storms in 2015 with strongest
future rotation

● Novelty maps (Figure 9) highlight the
following properties:
 Strong reflectivity core
 Rotational winds near reflectivity core
 Lack of surrounding deep convection

Figure 9: Most novel storms in the trial set 
(left column); most novel part of each storm 

(right column).

7. Future Work

● BAMS publication under review (McGovern 
et al. 2019).

● Develop ways to test statistical significance 
of interpretation results.

● Apply interpretation methods to multiscale 
data (e.g., radar image + mesoscale and 
synoptic-scale environments).

● Use ML interpretation to help create new 
scientific hypotheses.
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